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1 Introduction

This tutorial explains the time delay caused by digital control strategies in power elec-
tronics applications as well as its representation in the frequency domain (s-domain).
It is quite common to see a transfer functions in s-domain representing the delay caused
by digital controls. Such a function comes from the Padé’s approximation. This tu-
torial also explains how to properly account for the delay parameter in the transfer
function.

2 Representing a delayed signal in time-domain

Figure 1 presents a time-domain signal consisting of a single pulse occurring at the
instant t0. Note that the variable on the x-axis is time (t), therefore the signal is
represented by the function x(t).

Figure 1: Time-domain signal consisting of a single pulse occurring at the instant t0.

If, for any reason, the signal mentioned above is delayed, causing the pulse to occur
at the instant td, the result is illustrated in Figure 2. Notice that the duration of the
delay is represented by Td, which is constant value.

Figure 2: The same signal of the Figure 1, but now with the pulse occurring at td.

Considering the signals illustrated in Figures 1 and 2, we can conclude:
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• the shape of the signal did not change;

• the signal is now described by the function x(t− Td).

• td > t0 > 0)

3 Representing a delayed signal in frequency-domain

Since most linear controllers for power electronic applications are designed in the fre-
quency domain, specifically the s-domain, the signals discussed in the previous section
must be transformed to such a domain.

To transfer a signal from time-domain to the frequency-domain, the Laplace Trans-
form is typically used. The formal definition and properties of the Laplace Transform
are beyond the scope of this tutorial. Nevertheless, a very popular property is the
Time Shifting.

The following pairs of equations show how the signals x(t) and x(t− Td) are repre-
sented in the frequency domain through the Laplace Transform:

x(t) ⇔ X(s) (1)

x(t− Td) ⇔ X(s)e−sTd (2)

With these equations, we can conclude:

• the delay in a signal of duration Td appeared as e−sTd in the frequency domain.

• the term e−sTd represents a phase shift in the system, as will be observed later.

4 Using the Padé’s approximation to replace e−sTd

As mentioned earlier, linear controllers are typically designed in the frequency domain
(the s-domain). These controllers are later implemented on digital devices, such as
microcontrollers or FPGA boards. Therefore, during the design process, it is very
important to account for the delay introduced by the digital implementation. It’s also
important to note that, at some point, the controller will be discretized. However,
the discretization process is beyond the scope of this tutorial, and it is assumed that
the discretization has been performed correctly. A paper with rich content about
discretization can be found in [1].

The representation in s-domain of the time delay caused by the digital implemen-
tation could be done by inserting a representative transfer function as shown in the
block of Figure 3.

Figure 3: Representation in s-domain of the time delay caused the digital
implementation.

The problem of using the block shown in Figure 3 is the fact that its transfer
function is irrational, bringing complexities to the design process of the controllers.
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So, one option is to use the Padé’s approximation to replace the original transfer
function.

The detailed derivation of Padé approximation equations is beyond the scope of this
tutorial, but it is important to note that this approximation is derived from power se-
ries. Moreover, Padé’s approximation can represent several function like the sine, Bessel
and exponential function as a rational function of polynomials. The most commonly
approximation used for the exponential function is the is the first-order approximation.
Using high-order Padé’s approximation is quite rare in power electronic applications,
but one example can be found in [2].

Let’s first examine the Padé’s approximation in continuous-time domain. Equations
(3) and (4) present the first and second-order Padé’s approximation for the exponential
function.

e−xσ ≈
1− σx

2

1 + σx
2

(3)

e−xσ ≈
1− σx

2
+ σ2x2

12

1 + σx
2
− σ2x2

12

(4)

where σ is a constant.
Figure 4 shows the exponential function along with its first and second-order Padé

approximations, with σ = 0.1. The x -axis represents time. From the figure, it is evident
that the three functions coincide over a certain range of x. The smaller σ is, the larger
the region of coincidence becomes. This is advantageous because, in digital control,
we aim for a high sampling frequency, which results in a short sampling period and
minimal time delay. Consequently, representing the delay using Padé approximations
provides an accurate solution.

Figure 4: The exponential function and their first and second-order Padé’s
approximations.

Moving back to the s-domain, now we can replace the block shown in Figure 3 to
that shown in Figure 6. As a result, the block shows the representation of the time
delay by the first order Padé’s approximation.

3



Figure 5: Representation of the time delay by the first order Padé’s approximation.

To verify the effect that the inclusion of the above transfer function can cause in
a control strategy, let’s plot Bode diagrams of two transfer functions. The following
transfer functions are taking as example. The first is a unitary transfer function and the
second is the product of the unitary transfer function and the Padé’s approximation.

FT (s) = 1 (5)

FTdelayed(s) = FT (s).
1− sTd

2

1 + sTd

2

(6)

Figure 6 presents the frequency response of a unitary transfer function and its
delayed version.

Figure 6: Frequency response of a unitary transfer function and its delayed version.

Looking at the frequency response that has just been plotted, we can conclude:

• in the Magnitude diagram, both responses are coincident. This was expected,
since a time delay in a signal does not change its shape, as previously concluded.

• in the phase diagram, the delayed transfer function coincides with the unitary
transfer function at low frequencies but begins to diverge significantly at higher
frequencies.
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• to plot these Bode diagrams, it was adopted 10kHz as sampling frequency and
Td = 1.5Ts, where Ts is the sampling period.

• if the sampling frequency increases, the time delay (Td) decreases, resulting in a
larger region of coincidence in the phase frequency response. This also leads to
a larger region of overlap in the graphs shown in Figure 4.

5 What value to use in the constant Td?

In the previous section, it was adopted Td = 1.5Ts [3, 4]. The 1.5 is actually (1+0.5)Ts,
consisting of:

• 0.5Ts is attributed to the sampling and holding process, as illustrated in Figure
7. The figure presents the original signal (a sinusoidal signal in this case) and its
sampled and held version. Additionally, the figure includes the First Harmonic
representation. Within the microcontroller, only the sampled and held signal
exists. Notice also that the first harmonic is delayed by half related to the
sampling period. That’s the reason the 0.5Ts is adopted. This is valid for any
signal and any sampling frequency.

• 1Ts is attributed to the time required to compute the entire control algorithm.
In summary, the control algorithm is a sequential process composed of the fol-
lowing steps: (i) sampling and holding the variables, (ii) computing the control
algorithm, (iii) updating the PWM, and (iv) applying the result to the output.
Therefore, one sampling period (1Ts) is the delay caused by the control algorithm.

Figure 7: The original signal and its sampled and held version, as well as the first
harmonic.
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6 Final Considerations

As a final consideration, it is evident that selecting a high sampling frequency is bene-
ficial, as it reduces the adverse effects of delays. However, a higher sampling frequency
also limits the available time for executing the entire control algorithm.

Various techniques to mitigate the impact of delays are frequently discussed in the
literature.
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